Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated $\text{Si}_{1-x-y}\text{Ge}_x\text{C}_y$ films

W. Fenga, W.K. Choia,*, L.K. Beraa, M. Jib, C.Y. Yangb

aMicroelectronics Laboratory, Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
bMicroelectronics Laboratory, Santa Clara University, Santa Clara, California 95053, USA

Abstract

The optical properties of as-prepared and rapid thermal oxidized (RTO) heteroepitaxial $\text{Si}_{1-x-y}\text{Ge}_x\text{C}_y$ alloys grown on Si substrate have been characterized using spectroscopic ellipsometry. The critical points E_1, E_0, E_2 band gaps were determined by line shape fitting in the second derivative spectra of the pseudo-dielectric functions. For as-prepared films, the E_1 gap increases with C concentration and a linear dependence on C content was observed. However, the E_2 gap decreases as the C concentration increases. For the RTO samples, the amplitude of E_2 transition reduces rapidly and the E_1 transition shifts to a lower energy. The reduction in the amplitude of E_2 transitions is due to the presence of oxide layer. A high Ge content layer and the low C content in the RTO films account for the E_1 shift to lower energy and the increase of the refractive indices. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: $\text{Si}_{1-x-y}\text{Ge}_x\text{C}_y$; Spectroscopy ellipsometry; Pseudo-dielectric functions; Refractive indices

1. Introduction

The addition of C into substitutional sites in $\text{Si}_{1-x-y}\text{Ge}_x$ films allows one to tailor the strain in the film [1] and changes its band structure [2]. This may overcome the critical thickness limitation imposed on $\text{Si}_{1-x-y}\text{Ge}_x$ films grown epitaxially on Si [1]. We notice that there are only a few optical studies on strained $\text{Si}_{1-x-y}\text{Ge}_x\text{C}_y$ films that examine the band structure of the material [3–5]. There is also, to the best of our knowledge, no report on the dielectric properties of rapid thermal oxides (RTO) grown on $\text{Si}_{1-x-y}\text{Ge}_x\text{C}_y$ substrate. As SiGe-based materials have been proposed in applications in very high frequency electronics [6,7], it is important to investigate the influence of C on the dielectric properties of the as-prepared and rapid thermal oxidized $\text{Si}_{1-x-y}\text{Ge}_x\text{C}_y$ films.

2. Experiment

The $\text{Si}_{1-x-y}\text{Ge}_x\text{C}_y$ samples were grown on n-type (100) Si substrate in a rapid thermal chemical vapour deposition (RTCVD) system. The growth temperature and pressure were set at 600 °C and 1.5 Torr, respectively. The flow rates of the silane, germane and hydrogen were fixed at 80, 2, 1000 sccm, respectively. The flow rate of methylsilane was varied from 0 to 1.75 sccm to prepare alloys with different C contents. The exact amount of Ge (11.3 at%) and C (0.59, 1.32 and 1.84 at%) were determined by SIMS analysis. Rapid thermal oxidation was carried out in a dry oxygen ambient using an AST SHS 10 rapid thermal processor. The oxidation was performed at 1000 °C for 270 s with a gas flow of 2 slm for all the samples. Further details of the RTO process can be found in our previous paper [8].

The spectroscopic ellipsometry (SE) experiments were performed using a spectroscopic phase modulated ellipsometer (UVSEL) with an energy range of 1.5–4.5 eV. The rotating polarizer and tracking analyser were set at 70°. The energy increment and integration time for the SE experiments were set at...
0.01 eV and 2 s, respectively. The critical point energy (E_{cp}) and broadening factor (Γ) were obtained by fitting the second derivative of the dielectric constant ($\varepsilon = \varepsilon_1 + i\varepsilon_2$) versus the energy curve using least-square method.

3. Results and discussion

Fig. 1 shows the experimental pseudo-dielectric function versus the photon energy curves for the as-prepared Si$_{0.887}$Ge$_{0.113}$ and Si$_{0.887-y}$Ge$_{0.113}$C$_y$ alloys. The large amplitudes of E_1 and E_2 gaps of these samples indicate good crystallinity of the films. The energy and peak values of ε_2 for Si$_{0.887}$Ge$_{0.113}$ are comparable to strained SiGe films [9]. The amplitudes of ε_2 at E_1 and E_2 gaps decrease with an increase in C concentration. This is due to the alloying effect and the stoichiometric deformation of the films. The humps at the lower edge of the E_1 gap at 2.6, 2.4 and 2.3 eV for Si$_{0.8811}$Ge$_{0.113}$C$_{0.0059}$, Si$_{0.8738}$Ge$_{0.113}$C$_{0.0132}$ and Si$_{0.8686}$Ge$_{0.113}$C$_{0.0184}$ films may be due to C-related band gaps.

Fig. 2(a) shows the energy dependence of the second derivatives of ε_1 and ε_2 for the as-prepared samples. The results are fitted using the lineshape formula developed by Aspne [10] by assuming two critical points at E_1 and E_0'. In general, good agreement is obtained between the experimental and the simulated results. Fig. 3(a) shows the peak positions of E_1 and E_0' as a function of C concentration for the as-prepared samples. The E_1 transition increases linearly with increasing C concentration. However, the E_0' transition is independent of the C concentration. The broadening factor of E_1 transition for Si$_{0.887}$Ge$_{0.113}$ is 0.137 eV and increases to 0.149, 0.157 and 0.197 eV with the C concentration equal to 0.59, 1.32 and 1.84 at%, respectively. For the Si$_{0.887-y}$Ge$_{0.113}$C$_y$ alloys, the E_2 peak also broadened but shifts to lower energy. The broadening and shifting of the E_1 and the E_2 peaks may be attributed to the distortion near the carbon atoms and the internal splitting of electronic bands [11].

Fig. 4 compares the ε_2 values of the as-prepared and RTO samples. The intensity of the E_1 and E_2 transitions decreases for all the RTO samples. As the light penetration in the E_2 energy range transition is ~8 nm, the large reduction in ε_2 intensity at E_2 of the RTO samples is due to the presence of an oxide layer of 10–16 nm thick. Fig. 4 also shows that the E_1 transition
shifts towards the lower energy direction for the RTO samples. This means that the transition occurs from a higher Ge content layer in the samples. The higher Ge content layer may be due to the Ge pile-up at the SiO$_2$/substrate interface as a result of RTO. As the E_1 peak for samples Si$_{0.887}$Ge$_{0.113}$ and Si$_{0.887-\delta}$Ge$_{0.113}$C$_{\delta}$ are located at 3.07 eV, this means that the RTO process has reduced most of the C in Si$_{0.887-\delta}$Ge$_{0.113}$C$_{\delta}$. For samples Si$_{0.8738}$Ge$_{0.113}$C$_{0.0132}$ and Si$_{0.8686}$Ge$_{0.113}$C$_{0.0184}$, the E_1 transitions are located at 3.13 and 3.15 eV, respectively. These values are lower than the as-prepared samples. This may be due to a lower C concentration in the RTO samples as we have shown [8] from our SIMS results that the oxidized Si$_{0.8686}$Ge$_{0.113}$C$_{0.0184}$ had only 0.6% C left at the surface region. During oxidation, we suggest that the substitutional C can react with oxygen to form CO or CO$_2$. This reduces the chance of SiC precipitation.

Fig. 2. The second derivative of pseudo-dielectric function of (a) as-prepared and (b) RTO films with oxide etched away for Si$_{0.887}$Ge$_{0.113}$ and Si$_{0.887-\delta}$Ge$_{0.113}$C$_{\delta}$ alloys.

![Fig. 2](image1)

Fig. 3. Energy of the E_1 and E_0' critical points of (a) as-prepared and (b) RTO samples with oxide etched away for Si$_{0.887}$Ge$_{0.113}$ and Si$_{0.887-\delta}$Ge$_{0.113}$C$_{\delta}$ alloys.

![Fig. 3](image2)
To study the effect of oxidation on our samples, SE measurements were done after the oxide was etched away. The second derivatives of the pseudo-dielectric function versus photon energy curves of the etched samples are shown in Fig. 2(b). As compared to the as-prepared samples (Fig. 2(a)), an even better fit between

Fig. 4. Imaginary part of pseudo-dielectric function of the as-prepared and RTO Si_{0.887}Ge_{0.113} and Si_{0.887-\gamma}Ge_{0.113}C_\gamma alloys.

Fig. 5. Refractive indices of the as-prepared and RTO Si_{0.887}Ge_{0.113} and Si_{0.887-\gamma}Ge_{0.113}C_\gamma alloys.
the experimental and theoretical results is obtained for the etched samples. Fig. 3(b) shows that the E_1 transition is weakly dependent on the C concentration for the etched samples. This is reasonable as the C concentration in the sample significantly reduced after RTO. In general, the E'_0 transition of the etched sample is independent of C content in the film. Fig. 5 shows the refractive indices of the as-prepared and etched samples. It is clear for the etched samples that the refractive index increases with an increase in the incident radiation (<3.2 eV). During oxidation Ge pile-up at the oxide/epilayer interface [8, 12]. This will make the surface region (~ 20 nm) of the Si$_{1-x-y}$Ge$_x$$_y$ to be Ge rich. This Ge rich layer (with oxide etched away) is detectable by the SE measurements. The higher Ge content leads to a higher refractive index for the etched samples.

4. Conclusion

The pseudo-dielectric functions of the as-prepared and RTO Si$_{1-x-y}$Ge$_x$$_y$ films were studied using spectroscopic ellipsometry. The energy of transition gaps, E_1 and E_2, were obtained by performing lineshape analyses on the second derivative of the pseudo-dielectric functions. The results show that the E_1 gap increases and E_2 gap decreases as the C concentration increases. For the RTO samples, the amplitude of E_2 transitions reduces rapidly and the E_1 transition shifts to a lower energy. The reduction of the amplitude of E_2 transitions is due to the presence of oxide layer. The values of refractive index of the RTO samples (after etched away the top oxide layer) are higher compared to as-prepared films. A high Ge content layer and the low C content in the RTO films is used to account for the E_1 shift to lower energy and the increase of the refractive index.

Acknowledgements

The authors would like to thank Ms. S.I. Pang of the Data Storage Institute of Singapore for the help in SE experiments. The provisions of a Research & Development Grant (GR6471) by the National Science & Technology Board and a research fellowship (L.K. Bera) and a research scholarship (W. Feng) by the university are gratefully acknowledged.

References